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Abstract

Random vibration excitation is a common cause of failure, especially when the vibration
is in the range of natural frequencies, where the stress response is greatly amplified. A
vibration-fatigue analysis can be performed for a high-cycle regime consisting of a structural
dynamics analysis, a response calculation and a fatigue analysis. The material parameters
(S-N curve) are defined for a constant-amplitude, cyclical, uniaxial stress state. However, in
real structures the stress state due to the structural dynamics is rarely uniaxial the and direct
application of the S-N curve is difficult. The stress tensor is reduced to a more manageable
representation using a multiaxial criterion. A multitude of such criteria are available in
the literature. In this study, a group of multiaxial criteria are compared theoretically and
experimentally, i.e., maximum normal stress, maximum shear stress, maximum normal-and-
shear stress, C-S criterion, Projection-by-Projection and the Preumont and Piéfort criterion.
A special specimen is used in the experiments that experiences a rich structural response which
causes fatigue failure. The experimental comparison of the crack location and the time-to-
failure gives comparable results for the tested multiaxial criteria with a reliable time-to-failure
estimation. From the research it follows that the crack-location estimation is not accurate
enough for either of the compared criteria. The study proves the applicability of the vibration-
fatigue analysis procedure (i.e., from excitation, structural dynamics, multiaxial criteria to
spectral moment methods) on real vibrating structures with rich structural dynamics.
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Nomenclature

a vector of coefficient for a critical-plane multiaxial criterion
C S-N curve parameter
C covariance matrix
d(.) damage intensity of a random uniaxial process
dTB damage density according to Tovo-Benasciutti
D damping matrix
E [.] expected value
H(ω) transfer matrix
Hjk element of the transfer matrix
I identity matrix
Jref coefficient of the reference S-N curve
Jaxi coefficient of the axial S-N curve
Jtor coefficient of the torsional S-N curve
k S-N curve parameter
K material fatigue coefficient
K stiffness matrix
kref slope of the reference S-N curve
kaxi slope of the axial S-N curve
ktor slope of the torsional S-N curve
li, mi, ni directional cosine of the principal stress axes
mi i-th spectral moment
M mass matrix
Q von Mises coefficient matrix
S(ω) power spectral density (PSD)
Ss(ω) stress cross-spectral density matrix
SẌ(ω) displacements cross-spectral density matrix
Sxx,xx(ω) auto-spectral density of a tensor component
Seq(ω) equivalent uniaxial auto-spectral density
s2c equivalent von Mises stress according to Preumont and Piéfort
sx component of the stress tensor in the time domain
s vector of six independent stress-tensor components
sinv stress invariant in 5-dimensional space
s′ stress-tensor deviator components vector
Sinv(ω) stress invariant cross-spectral density matrix
sh hydrostatic stress
SU (ω) transformed stress-invariant cross-correlation matrix
U covariance matrix egienvectors
x(t) time-dependent displacements
αi spectral width parameter
ηTB coefficient of the Tovo-Benasciutti method
ηr damping loss factor (hysteretic)
ν+0 expected positive zero-crossing frequency
ν expected peak frequency
ρrho multiaxial coefficient
σ2 variance
σaf fully-reversed bending-fatigue limit
τaf fully-reversed torsion-fatigue limit
φjr element of the modal mass-normalized matrix
ω angular frequency
Ωi(ω) uncorrelated uniaxial process according to the PbP method
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1 Introduction

Broadband random excitation is a source of repeating load on a structure, originating from environ-
mental sources such as a rough road and sea currents, but also machinery such as combustion and
propulsion engines [1]. The stress response in a material is amplified at the system’s resonances [2],
causing a deterioration also known as vibration fatigue [3, 4, 5, 1]. The complete vibration-fatigue
procedure is performed in the frequency domain, which carries significant benefits, most notably,
fast calculation times and an efficient yet rigorous assessment of random processes [6, 7]. It consists
of a structural dynamics analysis, random response calculation and fatigue analysis. Stress-based
(high-cycle) fatigue-analysis procedures are based on the distribution of the amplitudes of damag-
ing stress cycles in the time [8, 9, 10] or frequency domain [11, 12]; however, the cycle counting and
damage summation on the six independent stress-tensor components is not a straightforward task.
A plethora of multiaxial criteria, in the time [13, 14, 15, 16] and frequency domains [3, 17, 18, 19],
are available in the literature, enabling the use of methods devised for a uniaxial stress state on
more general, multiaxial, complex stress states.

Comparison studies focus on either the time- [20, 21, 22, 23, 24] or frequency-domain for-
mulations [25, 3, 26]. Most of the experimental research is performed on specimens loaded in
a quasi-static regime (without considering the effects of the structural dynamics), showing good
agreement with the experimental results [27, 28]. However, such studies are rare for a vibrating
structure, where the stress state is a consequence of the dynamic response [29]. Furthermore, few
studies are available that exploit the broadband random excitation and structural dynamics to
induce failure [30, 31, 32, 33]. There is still a lot of uncertainty as to what level of accuracy for
the crack location and the time-to-failure estimation can be achieved.

The focus of this study is therefore on a theoretical and experimental comparison of multiaxial
criteria for a structural dynamics analysis in the frequency domain. The following criteria are
compared side-by-side: maximum normal stress [3], maximum shear stress [3], maximum normal-
and-shear stress [3], C-S criterion [34], Projection-by-Projection [19] and the Preumont and Piéfort
criterion [35, 28].

In this research, an experimental setup is presented for a fatigue combination resulting from two
modal-shape responses. A special Y-sample is excited with two uncorrelated random vibration
sources until failure. Two mode shapes are excited, and if one or the other is excited more,
the time-to-failure and the failure location are effected. This approach simulates very closely
the real-world scenario of a complex structure, vibrating due to broadband random excitation.
Furthermore, a FEM numerical approach is presented for the estimation of the crack location and
the time-to-failure.

This research is organized as follows. The basic theory of random processes, structural dynam-
ics and fatigue analysis is presented in Section 2. The compared multiaxial criteria are presented
in Section 3. Next, the experimental setup and procedure are described in Section 4, followed by
the numerical model of the structure and the vibration-fatigue analysis in Section 5. Finally, the
results and conclusions are presented in Sections 6 and 7.

2 Stress-based fatigue in the frequency domain

Vibration fatigue requires a systematic approach to dealing with random stress tensors in the
frequency domain. The basic theory is described in the following sections. Detailed descriptions
can be found in Bendat and Piersol [36], Newland [37], Maia et al. [2], Nies lony and Macha [3]
and Socie [4].

2.1 Uni-axial random process

Normal-distributed random processes are theoretically well defined and offer a convenient way of
modeling random excitation and response. The process can be described by the power spectral
density (PSD) S(ω). It is further characterized by the moments mi:
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mi =

∫ ∞
−∞

ωi S(ω) dω (1)

which convey information about the properties that the process exhibits in the time domain,
e.g., variance σ2, expected positive crossings rate ν+0 , expected peak rate ν and the spectral width
parameter αi [36, 37]:

ν+0 =
1

2π

√
m2

m0
ν =

1

2π

√
m4

m2
αi =

mi√
m0m2 i

(2)

The cycle-amplitude probability density can be estimated based on the spectral moments, using
one of the frequency-domain counting methods [12], e.g., the narrowband method [38], Dirlik [39]
or Tovo-Benasciutti [11], of which the Tovo-Benasciutti damage intensity dTB is given here:

dTB =
[
ηTB + (1− ηTB)αk−12

]
α2 dNB (3)

where k is the material fatigue parameter, dNB defines the narrowband damage intensity and
ηTB was chosen by the authors [11] and is based on numerical simulations:

dNB = ν20 C
−1 (√2m0

)k
Γ

(
1 +

k

2

)
(4)

ηTB =
(α1 − α2)

[
1.112 (1 + α1 α2 − (α1 + α2)) e2.11α2 + (α1 − α2)

]
(α2 − 1)2

(5)

the S-N curve is used for high-cycle stress-based fatigue, conveying specific material properties
in an analogous way to the time-domain analysis procedure. They are given with the constants
C and k, thus defining the SN parabola, which defines the relationship between the number of
cycles-to-failure N for a constant cycle amplitude s [11]:

C = skN (6)

2.2 Structural dynamics analysis

A description of the stress state in a material is needed before a fatigue analysis can be performed.
One possible way to deduce the stress responses, based on a modal model, is described in the
following. The modal model of a multi-degree-of-freedom (MDOF) system is obtained from a
frequency analysis of the FEM model, for which the equilibrium equations are defined [2]:

M ẍ(t) +Kx(t) + iDx(t) = f(t) (7)

comprising the mass matrix M , the damping matrix D, the stiffness matrix K, the force f(t)
and the displacements x(t). The solution of the eignevalue problem gives the eigenfrequencies
and eigenmodes, characterizing the dynamic properties of the MDOF structure. Modes are decou-
pled and the modal superposition approach is used to further deduce the response model, which
conveniently provides the relationship between the excitation F and the response X:

X = H(ω)F (8)
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where the jk-th element of the receptance matrix H(ω) is calculated using an assumption of
the hysteretic damping:

Hjk(ω) =

N∑
r=1

φjr φkr
ω2
r − ω2 + i ηr ω2

r

(9)

where ω2
r is the r-th natural frequency, ηr is the modal damping loss factor for the r-th

natural frequency and φjr is the jr-th element of the mass-normalised modal matrix φ [2]. The
resulting receptance matrix offers the possibility of a fast response calculation when the structure
is excited by a known force. It also makes it straightforward to update the numeric model with
experimentally obtained modal data, e.g. substitute experimental modal damping factors into the
numerical model.

However, in applications, it is frequently the kinematic excitation that is given. Such is the
case for the base motion excitation, which is commonplace in accelerated vibration tests using an
electrodynamic shaker. Because the forces in the supports are unknown, the above approach from
(8) cannot be used directly. A solution is offered by a structural modification approach, such as
the SMURF (structural modification using response functions) method, which will be used in the
course of this paper when necessary. It is an impedance-based method for deriving the dynamics of
a constrained structure based on an unconstrained model. By splitting the model into constrained
and unconstrained parts and performing some clever manipulations of equilibrium equations, the
kinematic base-excitation response can be deduced [40].

The transfer-function matrices Haa relate the kinematic random excitation SẌ(ω) to the
acceleration responses for the purposes of model updating. The transfer-function matrices Has

relate the excitation to the stress responses [41] for the purposes of the fatigue analysis:

Ss(ω) = H∗as(ω)Has(ω)SẌ(ω) (10)

Analogously, the Hfa and Hfs are needed for the force-response calculation, while the indices
fa and fs convey the force-to-acceleration and the force-to-stress FRFs, respectively. The stresses
Ss(ω) are described in the frequency domain by the auto-spectral and cross-spectral densities of
the six independent stress-tensor components in the form of a 6× 6 matrix:

Ss(ω) =

Sxx,xx(ω) . . . Sxx,yz(ω)
...

. . .
...

Syz,xx(ω) . . . Syz,yz(ω)

 (11)

3 Multi-axial criteria

Multi-axial criteria approach the reduction of the stress components from Eq. (11) in different
ways, but can usually be placed in one of two groups: stress-invariant methods and critical-plane
methods. The invariant-calculation methods produce a result for the material point, regardless
of the orientation of the critical plane, while critical-plane methods produce different results on
different planes at this same material point. The experimental data shows [21, 20, 42] that the
critical-plane methods are better suited to proportional loads (principal axes are fixed), while
the stress-invariant-based methods are better suited to non-proportional loads (the principal axes
rotate with time).

In the following sections a group of selected multiaxial criteria formulated for the frequency
domain are presented. The criteria that were experimentally compared are as follows: maximum
normal stress [3], maximum shear stress [3], maximum normal and shear stress [3], Preumont and
Piéfort [28], C-S criterion [34] and the Projection-by-Projection approach [19].
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3.1 Criteria of the maximum stress on a critical plane

This group of criteria determines the equivalent stress Seq(ω) from the combination of stress
components on the critical plane. Three different approaches are presented here, adopted from
Nies lony and Macha [3], i.e., the maximum normal stress, the maximum shear stress and the
criterion of maximum normal-and-shear stress.

The equivalent stress Seq(ω) is interpreted as a single output of a six-input physical system,
the six inputs being defined by a linear combination of the components of the stress matrix Ss(ω)
from (11):

Seq(ω) = aSs(ω)aT (12)

Each of the three maximum stress criteria is then defined by Eq. (12) and a vector of the
coefficients a suiting the respective multiaxial criterion, according to Table 2.

Table 2: Coefficients defining the multiaxial criteria [3].
a Max. normal Max. shear Max. normal and shear

a1 l21
(
l21 − l23

)
1

1+K

[
l21 − l23 +K

(
l21 + l23

)2]
a2 m2

1

(
m2

1 −m2
3

)
1

1+K

[
m2

1 −m2
3 +K

(
m2

1 +m2
3

)2]
a3 n21

(
n21 − n23

)
1

1+K

[
n21 − n23 +K

(
n21 + n23

)2]
a4 2 l1m1 2 (l1m1 − l3m3) 1

1+K [l1m1 − l3m3 +K (l1 + l3) (m1 +m3)]

a5 2 l1 n1 2 (l1 n1 − l3 n3) 1
1+K [l1 n1 − l3 n3 +K (l1 + l3) (n1 + n3)]

a6 2m1 n1 2 (m1 n1 −m3 n3) 1
1+K [m1 n1 −m3 n3 +K (m1 +m3) (n1 + n3)]

The li, mi and ni are directional cosines of the principal stress axes and K is the material
fatigue coefficient, defined as [42]:

K = 2
τaf
σaf
− 1 (13)

τaf being the fully reversed torsion-fatigue limit and σaf being the fully reversed bending-fatigue
limit.

3.1.1 Critical plane

The resulting stress function Seq(ω) depends on the angle of the plane for which it is calculated.
The angle is usually determined in one of two ways [3]. The first approach suggests calculating
the damage for a number of different planes, spaced out equally, and then choosing the one that
gives the maximum damage. The second, computationally less intensive, approach used in this
study assumes that the critical plane coincides with the plane of maximum variance for the chosen
criterion. This speeds up the calculation as the inputs are no longer functions of the frequency, but
just scalar values of the (co-)variance (σ2

xx,xx, σ2
xx,yy ...). The covariance matrix C is calculated

for this purpose:

C =

σ
2
xx,xx · · · σ2

xx,yz
...

. . .
...

σ2
yz,xx · · · σ2

yz,yz

 (14)

Based on C the plane is searched, giving the maximum value of the variance σ2
seq = Var [Seq]

for the multiaxial criterion. This is done in an analogous way to the equivalent stress calculation
based on Eq. (12).

6



σ2
seq = aC aT (15)

While the described approach to a critical-plane search could be used generally, the maximum
normal-and-shear stress criterion is treated in a different manner in the course of this study. The
critical plane is defined as the plane with the maximum variance of shear stress rather than the
plane with the maximum variance of the criterion itself, in accordance with Matake [14].

3.2 Preumont and Piéfort criterion

In 1994 Preumont and Piéfort [35] proposed a frequency-domain method to estimate high-cycle
fatigue damage based on the definition of the well-known von Mises stress sc, defined in the time
domain as

s2c = s2x + s2y + s2z − sx sy − sx sz − sy sz + 3
(
s2xy + s2yz + s2xz

)
(16)

If s is written in vector form as s = (sx, sy, sz, sxy, sxz, syz) Eq. (16) can be reformulated and
the expected value of the von Mises stress expressed as:

E
[
s2c
]

= sT Qs = Trace
{
QE

[
s sT

]}
(17)

where Q is a coefficient matrix

Q =


1 -1/2 -1/2 0 0 0

-1/2 1 -1/2 0 0 0
-1/2 -1/2 1 0 0 0

0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 (18)

The expected value of the product E
[
s sT

]
is actually the expected value of the matrix Ss(ω)

from Eq. (11) and is straightforward to calculate, leading to

E
[
s2c
]

=

∫ ∞
0

Trace {QS(ω)} dω (19)

What Eq. (19) conveys is that the expected value or the mean-square of the von Mises stress
is equal for the time-domain and for the frequency-domain formulation. Based on this equality
the formulation of a multiaxial criterion is given in the form of [17]:

Sc(ω) = Trace {QS(ω)} (20)

Benasciutti [43] and Bonte et al. [44] pointed out problems concerning the mathematical rigor-
ousness and physical correctness of this method. However, due to the simplicity of the approach,
this is one of the frequently used frequency-domain methods for the equivalent-stress calculation.
In fact, a formulation is suggested by Bonte et al. [44] that takes into account the phase between
the stress-tensor components. Surprisingly, the effect of the phase-offset reduces the damage of
the von Mises method, in contrast to the experimental results, as noted by Nies lony [27].
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3.3 Carpinteri-Spagnoli criterion

Carpinteri et al. proposed a rather elaborate time-domain, multiaxial criterion in 2001 [45]. The
central point of this criterion is to determine the orientation of the critical plane by averaging the
principal stress directions, prior to the critical-plane criterion’s application. A frequency-domain
formulation was proposed in 2014 by Carpinteri et al. in [34]. Once the critical-plane orientation
is determined, the equivalent stress is calculated as follows

Seq(ω) = Szz(ω) +

(
σfr
τfr

)
Syz(ω) (21)

where σfr is the fully reversed bending-fatigue limit and τfr is the fully reversed torsion-fatigue
limit. Szz(ω) and Syz(ω) are defined so that the axes x, y lie on the critical plane, perpendicular
to z. For the derivation of the critical-plane orientation the reader is referred to the original
paper [34].

3.4 The Projection-by-Projection approach

In 2008 Cristofori et al. [16] proposed a method for deducing the damage based on the second
invariant of the stress-tensor deviator. It was later (2011) reformulated for the frequency do-
main [19]. The stress invariant sinv = (S1, S2, S3, S4, S5) is defined in the E5 Euclidean space
according to:

S1 =

√
3

2
s′1 S2 =

1

2
(s′2 − s′3) S3 = s′4 (22)

S4 = s′5 S5 = s′6 (23)

where s′ = (s′1, s
′
2, s
′
3, s
′
4, s
′
5, s
′
6) are the components of the stress-deviator tensor, defined to-

gether with the hydrostatic stress sh:

s = s′ + I sh (24)

where I is the identity matrix. The essence of the method is the transformation of the cross-
spectrum matrix Sinv = sinv s

T
inv into the sub-space of eigenvectors of the (stress-invariant) co-

variance matrix C ′ (see (14)). For this purpose, the eigenvectors U of C ′ are obtained, which can
be used to transform C ′ into a diagonal matrix C ′0:

C ′0 = UT C ′U (25)

and are applied to the frequency-domain, stress-state definition Sinv(ω), yielding the trans-
formed matrix of SU (ω)

SU (ω) = U Sinv(ω)U (26)

A group of five uncorrelated uniaxial processes Ωi(ω) is thus defined. Each process is treated
separately and the damages d(Ωi), calculated using a chosen spectral moment method are then
summed according to a quadratic damage-accumulation rule:

d(Ω) =

[
5∑
i=1

(d(Ωi))
2

kref

] kref
2

(27)
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where kref defines the slope of the reference S-N curve, derived from the axial (JA,axi, kaxi) and
torsion (JA,tor, ktor) S-N curves via the following linear interpolation:

JA,ref = JA,tor + ρref (JA,axi − JA,tor)
kref = ktor + ρref (kaxi − ktor)

(28)

where the reference stress ratio is determined from the load characteristics using:

ρref =
√

3
sh,m +

√
2m0,h√

2
∑5
i=1m0,i

(29)

4 Experiment

A special Y-sample was used in the experiment [32, 46], shown in Fig. 1. It is made from cast
aluminum, cut to the specified shape. Weights are affixed to each side, tuning the modal frequencies
and the shapes of the specimen, enabling a study of the high-cycle fatigue by exciting the near
resonant frequencies. A hole is drilled near the center to facilitate a force- excitation mount, which
must successfully resist the relatively large loads. The Y-specimen is attached to the fixture, as
shown in Fig. 2.

force excitation 
mount

kinematic 
excitation mount

added weights

response 
accelerometers

Figure 1: Schematics of the Y-sample.

An accelerometer is mounted on each side of the specimen, as shown in Fig. 1 and 2. At
the beginning of the experiment these sensors are used to update the FEM model based on
the kinematic response. Throughout the experiment the accelerometers are used to monitor the
response in real time in order to measure the mode frequency.

Kinematic excitation is applied in the vertical direction on the fixture. It is controlled in a
closed loop with the reference accelerometer. Because of the nature of the controlled kinematic
excitation it was possible to ensure a uniform, broadband profile in the frequency range 380–480
Hz. This range covers the natural frequency and its vicinity, even after it drops significantly.

The force excitation is applied perpendicularly near the center of the sample, as shown in
Fig. 3. It is controlled with an open loop using a force transducer. The amount of exerted force
Frms is regulated with a 2-kW power amplifier and the drive-signal voltage profile Urms is kept
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response 
accelerometers

force sensor

Figure 2: Experimental setup.

constant throughout the experiment. While the drive was a uniform, broadband random signal in
the range 290–390 Hz, the force profile measured with the sensor was not uniform as a consequence
of the structure-exciter interaction.

force 
excitation

kinematic 
excitation

reference 
accelerometer

Figure 3: Application of the excitation.

Each load case is defined in advance, as a combination of different kinematic and force broad-
band random loads. Table 3 shows the loads measured for each load case (specimen). Additionally,
the load combinations are visualized in Fig. 4. For each such combination, exactly one specimen
is excited until failure, which yields a total of 10 specimens.

4.1 Determining Time-to-failure

Determining the time-to-failure from an experiment is a delicate task. It is unfeasible to load the
sample until total failure, because the structural dynamics change much earlier in the process,
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Table 3: Force and kinematic load combinations, measured.
load case Frms [N] arms [g]

1 2.42 1.25
2 2.51 1.51
3 2.32 1.73
4 3.11 0.86
5 3.36 0.99
6 3.36 1.28
7 3.39 1.49
8 3.94 0.80
9 4.06 1.10
10 3.73 1.27

2.5 3.0 3.5 4.0

Force excitation rms Frms [N]

0.8

1.0

1.2

1.4

1.6

1.8

K
in

em
at

ic
ex

ci
ta

io
n

rm
s
a

rm
s

[g
]

1

2

3

4

5

6

7

8

9

10

Figure 4: Force and kinematic load combinations, measured.

deviating from the linear numerical model. A damage model is used in its place, which relates the
accumulated damage to the natural frequency change, and is straightforward to measure using an
accelerometer.

There is a complication due to the fact that while the damage d is unique for the specimen at
hand, the two excited modes experience different changes in natural frequencies ∆ω1 and ∆ω2, as
a consequence of a change in d.

A frequency-based, damage-detection method (FBDD) by Kim et al. [47] is used, which sug-
gest a proportionality between the damage αj inflicted at the location j, the sensitivity Fij of a
particular mode i at location j and a fractional change in the frequency Zi:

NE∑
j=1

Fij αj = Zi (30)

where Zi = ∆ω2
i /ω

2
i,0 and NE is the number of elements. For the purpose of this study, the

sensitivities for different elements are assumed to be equal and a fraction of Zi = 5 % (of a drop
of angular frequency ωi,0) is used to determine the failure, equivalently for both excited modes
(Zi = Z1 = Z2). Based on the definition of Zi, a change of the angular frequency corresponding
to a fractional drop in the natural frequency ∆ωi of 5 %, can be derived:
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∆ωi = ωi,0 −
√
ω2
i,0 − 0.05ω2

i,0 (31)

where the ωi,0 for both modes (i = 1, 2) is determined separately for each specimen at the
beginning of the experiment.

5 Vibration-Fatigue Analysis

A linear numerical model was used to produce time-to-failure estimates. It was prepared with
the finite-element method (FEM), and commercial software was used to extract the first eight
eigenmodes of the undamped model (up to 3285 Hz). Subsequent calculations were performed
using software routines prepared by the authors. First, eigenmodes and experimental modal
damping data were used to derive the force response for mode I at 355 Hz and the kinematic base-
excitation response for mode II at 472 Hz. The modal-superposition and structural-modification
techniques were used to arrive at the responses. The modal shapes, are shown together with the
undeformed model in Fig. 5 and 6.

Figure 5: Modal shape I.

Figure 6: Modal shape II.

The comparison of the calculated and measured FRF is shown in Fig. 7 and 8 for each of
the excited modes, for the relevant frequency ranges. The relative error, in comparison with the
experiment, is 2.5% for mode I and 0.9% for mode II.

Hysteretic damping was identified on the experimental data using the circle-fit method [2] and
the yet to be released open source software OpenModal [?]. The excitation profile measured in
the experiment was used to update the numerical model and deduce the stress responses. This
procedure was performed for each specimen, thus improving the accuracy of the stress responses,
as the damping values can vary slightly between specimens.

The stress responses are calculated for each mode shape separately and summed in the fre-
quency domain, assuming that the excitation sources are uncorrelated:

Ss(ω) = S1(ω) + S2(ω) (32)
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Figure 7: Comparison of calculated and measured frequency-response function of the structure in
the frequency range and the direction of the force excitation.

380 400 420 440 460 480

Frequency [Hz]

0

5

10

15

20

25

30

35

40

45

M
ag

ni
tu

de
[m

s−
2
/m

s−
2
]

model
experiment

Figure 8: Comparison of calculated and measured frequency-response function of the structure in
the frequency range and the direction of the acceleration excitation.

where S1 and S2 are the responses for each mode and Ss is the combined response, which is
fed to the multiaxial criterion.

Based on the calculated responses the multiaxial criteria were applied to obtain the final time-
to-failure. Using the optimization procedure such material parameters were chosen that minimized
the difference with respect to the experimental results. In the first pass, generic material data
was used to deduce the critical node. The L-BFGS-B [48] optimization procedure was used next,
to produce the optimum material parameters, by minimizing the sum of the square of difference
between numerical ti,num and experimental times to failure ti,exp
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∑
i

(ti,exp − ti,num)
2

(33)

across all samples i. The optimization was applied for the S-N curve data only, for each
multiaxial criterion separately. The C-S approach and the criteria for the maximum normal and
shear stress require additional material data, which were unavailable for the particular aluminum
alloy (AlSi7Cu3) used in this study. The values of the fully reversed bending limit σaf = 161 and
the fully reversed torsion limit τaf = 97 were taken from the literature [49] for the aluminum alloy
AlCuMg1.

6 Results and Comparisons

When analyzing the results it is important to keep in mind that the estimates are the final output of
the structural dynamics analysis, spectral moment methods and the experimental measurements,
each being a source of error. However, as the procedure chain for calculating the time-to-failure
is very similar for each of the criteria, the side-by-side comparison gives a very useful insight
into how these criteria perform and at the same time draws conclusions about the accuracy and
performance of the complete vibration-fatigue analysis procedure.

6.1 Time-to-Failure Comparison

The time-to-failure ranges from 20 min to 135 min, yielding from 9 × 105 to 6 × 106 of damage
cycles, falling well into the domain of high-cycle fatigue. The S-N curve parameters, obtained
through the optimization procedure, are given in Table 4. One has to keep in mind, that this
material data is closely tied to the Y-specimen and its dynamic properties and can not be directly
compared to cyclic test results.

Table 4: S-N curve parameters, that provided the best fit of experimental and numerical results.
Multiaxial criterion C [MPak] k
Max. shear stress 4.71× 1022 1.92
Max. normal stress 5.37× 1023 2.18
Preumont and Piéfort 4.99× 1021 1.92
Projection-by-Projection 2.23× 1018 1.71
Carpinteri-Spagnoli 3.83× 1018 1.51
Max. normal-and-shear s. 1.11× 1021 1.85

A look at the time-to-failure correlation between the theory and experiment (see Fig. 9, also
representative for all the other multiaxial criteria) reveals that the criteria give reasonably accurate
results.

Most of the estimates are within ±200% of the experimental results (dashed line) and only a
few deviate by ±300% or more (dotted line). A side-by-side comparison is provided in Fig. 10,
plotting the relative difference D between the experimental and numerical results:

D =
texp − tnum

texp
(34)

where texp is the experimental time-to-failure and tnum is the numerical estimate. This com-
parison confirms that the results of different multiaxial criteria are relatively close. It also reveals
that discrepancies between estimates of different criteria are biggest for the force dominant load
cases.
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Figure 9: Results for the maximum shear-stress criterion.

1 2 3 4 5 6 7 8 9 10

Load case number

−1000.0

−100.0

−10.0

−1.0

−0.1

−0.01

0.01

0.1

1.0

10.0

100.0

1000.0

t e
x
p
−
t n

u
m

t e
x
p

[%
] co

n
se

rv
a
ti

v
e

n
o
n
−

co
n

se
rv

a
ti

v
e

C-S
Max. shear

Projection-by-Projection
von Mises

Max. normal
Max. normal-and-shear

Figure 10: Side-by-side comparison of the time-to-failure estimates for each load case.

6.2 Crack-Location Comparison

The side-by-side comparison of the multiaxial criteria reveals that there are only minor variations
between the different criteria. This fact is illustrated in Fig. 11, comparing the time-to-failure
contours. The minimum of the time-to-failure is not exactly at the same location for each criteria,
but they are fairly close, i.e., unable to discern with a simple visual inspection. This trend was
observed for all of the compared criteria.

In contrast to the numerical results, the comparison of the experimental results revealed that
there is an offset in the crack location which correlates with the load ratio δ = Frms/arms. To
illustrate this phenomenon, cracked samples are sorted by the value of δ in ascending order from
left (acceleration dominant load) to right (force dominant load), see Fig. 12. In this way a trend
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Figure 11: Time-to-failure contour for load case 6, calculated using the Projection-by-Projection
approach (a), C-S criterion (b) and Preumont and Piéfort criterion (c).

is evident, although not without scatter: the crack shifts in concert with the δ change. Such
results demonstrate the combined effect of the interaction of the response stress distributions of
two different mode shapes.

10 mm

»
3.3 m

m

acc. dominant force dominant

Figure 12: Side-by-side comparison of the crack position in the Y-samples.

A numerical experiment is made at this point, where only one part of the load is applied (force
or kinematic). Two critical points C1 (due to the force load) and C2 (due to the kinematic load)
emerge at different locations, as shown in Fig. 13.

One would then expect, judging from the experimental results, that the critical point for the
combined load would lie on a path connecting the two separate critical locations C1 and C2.
However, calculations give a somewhat unexpected result. Instead of appearing at intermediate
locations, the critical point stays mostly fixed at C1, then changes to C2 for the load case 3 (see
Fig. 14). The finite-element size should be sufficiently small at 0.4 mm in the vicinity of the
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Figure 13: Positions of calculated critical points for the force dominant load C1 (a) and the
acceleration dominant load C2 (b).

crack, much less than the crack offset, approximately 3 mm. These findings suggest that there
are inaccuracies present in the results with regards to the crack location for the case of combined
random loads.

It should be noted at this point that the crack position was determined from the grown crack,
and that the exact spot of the crack initiation was not identified.

7 Conclusions

This paper presents a complete procedure for a vibration-fatigue analysis and its validation. An
experiment is performed that simulates the realistic scenario of a vibrating structure with a rich
structural response. It is performed with a Y-specimen, brought to failure by a combination of two
near-reasonance responses of two separate modal shapes. The time-to-failure is determined and
compared with the numerical results, using seven different multiaxial criteria, i.e., the maximum
normal stress, maximum shear stress, maximum normal-and-shear stress, Preumont and Piéfort,
C-S and Projection-by-Projection criterion.

The material load is a consequence of the combination of two different modal stress shapes. In
a sense its multiaxiality might have been less pronounced in comparison with the more classical
example of the combination of quasi-statical bending and torsion. However, the response produced
in this study is a very typical structural response and is representative for the case of vibration
fatigue, which is caused by the natural response of the structure and not by enforced quasi-static
displacements.

There is experimental evidence that the ratio of the severity of two excitation loads, which are
applied to the sample at a perpendicular angle by two uncorrelated vibration sources, has an effect
on the location of the crack. At the same time this same phenomenon went almost unnoticed in
the numerical analyses, raising some concerns about the accuracy of the crack-location estimate,
given by the compared multiaxial criteria. Overall, the damage distribution fields, showing the
damage intensity (or time-to-failure) on different parts of the specimen, were close for all of the
compared multiaxial criteria.

Most time-to-failure estimates fall within the ±2× band, with only a few outliers. The results
are well correlated, proving that the nature of high-cycle fatigue is captured relatively well with the
multiaxial criteria in the frequency domain. Furthermore, it stands as a proof that the complete
procedure, from the stress-response calculation to the frequency-domain cycle-count estimate,
is feasible and gives useful estimates for vibrating structures experiencing a notable dynamic
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Figure 14: Position of critical points for load cases 2 (a), 3 (b), 6 (c) and 8 (d) as calculated with
the C-S multiaxial criterion. The red dot indicates the location of the crack.

response.
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[35] A. Preumont and V. Piéfort. Predicting random high cycle fatigue life with finite elements.
Journal of Vibration and Acoustics, 116:245–248, 1994.

[36] Julius S. Bendat and Allan G. Piersol. Random Data: Analysis and Measurement Procedures.
Wiley, 2010.

[37] D. E. Newland. An introduction to Random vibrations and spectral analysis. Longman Sci-
entific & Technical, 1993.

[38] J. W. Miles. On structural fatigue under random loading. J. Aeronaut. Soc., 21:753–762,
1965.

[39] T. Dirlik. Application of Computers in Fatigue Analysis. PhD thesis, The University of
Warwick, 1985.
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modification for the case of base excitation. Journal of Sound and Vibration, 332(20):5029–
5039, 2013.
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